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INTRODUCTION

In several problems of approximation theory we have to use the error
function and the stability function of a space P of approximants. (See, e.g.
Refs. [2] and [7]). Namely, suppose U and V are Banach spaces such that

U C V and the injection is compact and dense.

Let P be a closed subspace of V. We define the error function by

euV(p) = sup inf II u - v [Iv .
UEU VEP II uIlu

If P is finite-dimensional, we define the stability function by

SUV(P) = sup~ .
UEP II u I[v

(1)

(2)

(3)

(SUV(P) is finite, since all norms on a finite-dimensional space are equivalent).
The motiviation for the present paper was the study of these functions.

First of all, they are related by the following duality relation:

(4)

where U', V' are the duals of U and V, respectively, and pi. is the annihilator
of P. On the other hand, they are eigenvalues of certain nonlinear operators
(which are linear in case U and V are Hilbert spaces). For the sake of simpli-
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city, we shall restrict our study to the case where V and V are smooth,
uniformly convex, reflexive Banach spaces. In this case, there exists a unique
duality mapping J from V onto V' (resp., K from V onto V') which is the
one-to-one nonlinear mapping J defined by

(Ju, u) = II u II~ ; II Ju Ilv' = II u Ilv . (5)

Then if t is the (nonlinear) best approximation projector from V onto P,
defined by

II u - tu Ilv = inf [I u - v Ilv ,
,/;EP

(6)

the error function is the square root of the largest eigenvalue of the operator
(1 - t) K-IJ(l - t).

In order to characterize the stability function, we have to introduce another
nonlinear projector s from V onto P (the stabilization projector). If we define
the cosine of the angle between two elements, u and v, of V by

(Ju, v)
cos(u, v) = II u 111I v II '

then the projector s is defined by

(7)

cos(u, su) = sup cos(u, v);
VEP

II su II = cos(u, su) II u II· (8)

These projectors sand t are linked by the following duality relation:

(9)

where tl- is the best approximation projector from V' onto pl-.

When V is a Hilbert space, formula (9) shows that s is the (Hilbertian)
adjoint of t; s coincides with t, since the orthogonal projectors are the ones
which are self-adjoint.

We shall prove, in general, that if P is a finite-dimensional subspace of V,
the stability function is the square root of the largest eigenvalue of the
operator sJ-lKs. Incidentally, we shall prove the following two formulas.
If P = ker r is the kernel of a continuous linear operator from V onto a
Banach space E, then

t = 1 - pr, where p = J-lr '(rJ-lr ')-I,

and if P = pE is the closed range of a linear isomorphism from a Banach
space E into E, then

s =pr, where r = (p'Jp)-1 p'J.
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1. DUALITY MAPPING AND COSINES

1.1. Duality mapping

Let us recall the definition of the duality mapping from a Banach space V
into its dual V' (see Refs. [3,4]).

By the Hahn-Banach theorem, we can associate with any u of the unit
sphere of V a continuous linear form Ju of the unit sphere of its dual V'
such that

(Ju, u) = 1;

and we shall choose Ju so that

IIJull* = 1, (1.1)

J(-u) = -J(u). (1.2)

Here (f, v) denotes the duality pairing on V' x V, II II is the norm of V,
and II [1* is its dual norm.

We shall extend this mapping J, defined on the unit sphere, to all of V. Let
ex > 1. We set

J(O) = O. (1.3)

Such an operator is called an (ex-) duality mapping from V into V' and satisfies

(i) II Ju "* = II u 11"'-1;

(ii) (Ju, u) = II u II"';

(iii) (Ju - Jv, U - v) ~ (II u II - II v 11)(11 u 1["'-1 - [[ v 11"'-1) ~ 0;

(iv) J(>"u) = I >.. 1"'-2 Mu.

(1.4)

We are mainly interested in the case where there exists a unique bijective
duality mapping from V onto V'. This is the case when V is a smooth, strictly
convex, reflexive Banach space (briefly, an R.S. space), where

(i) A space V is smooth iff each point of its unit sphere possesses a
unique supporting hyperplane (equivalently: iff the norm II u II is Gfiteaux­
differentiable at each point of the unit sphere);

(ii) A space V is strictly convex (or rotund) iff its unit sphere does not
contain any line segment.

Let us recall (see Ref. [5]) that a reflexive Banach space is smooth iff its dual
is strictly convex. Therefore, we have

LEMMA 1.1. Let V be an R.S. space. Then there exists a unique ex-duality
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mapping J = JviY. which is one-to-one from Vonto V', and which is equal to the
Gateaux derivative of the functionall/rx II v 11iY.. Moreover,

1 1
where - +,. = 1.

ex ex
(1.5)

The Lebesgue spaces LiY. and the Sobolev spaces Wm.iY. are R.S. spaces for
1 < rx < + 00. The rx-duality mapping of LiY. is the map Ju = IU!iY.-2U.
A closed subspace and a factor space of an R S. space are also R.S. spaces.
The following lemma provides a tool for constructing duality mappings.

LEMMA 1.2. Let CPk be a continuous linear operator from a space V into an
R.S. space Ek (k = 0,... , m) and let V be a Banach space for the norm

rx>1. (1.6)

Then V is also an R.S. space. If Jk is the rx-duality mapping from Ek onto Ek',
the rx-duality mapping of V is

m

JviY. = I CPk'J;kCPk,
k=O

where CPk' denotes the transpose of CPk .

(1.7)

If V is a Hilbert space with the inner product «u, v)), the 2-duality mapping
from V onto V' is nothing else than the canonical isomorphism of the
Riesz-Fischer theorem defined by

(Ju, v) = «u, v)); J E 5l'(V, V'). (1.8)

1.2. Cosine of two vectors of an R.S. space

We extend the usual definition of the cosine of the angle between two
vectors of a Hilbert space in the following way: If V is an RS. space we define

It is a non-symmetric functional on V X V satisfying

() (
(JviY.u, v)

cos u,v = cOSv u, v) = II u 11iY.-III v II
(JvIlU, v) .

II u IIIl-I II v II ' rx> 1; f1 > 1.
(1.9)

and

I cos(u, v)1 ,:;; 1; cos(.\u, p,v) = cos(u, v)

cosv(u, v) = cosv{Jv, Ju).

for '\, p, ;;: ° (1.10)

(1.11)

Remark 1.1. If V is a normed linear space, we can also define the cosine
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of the angle between two vectors, u and v, of the unit ball in the following way:

cos (u v) = lim (II u + av II - II u ID
v, 8~0 a

8>0

(1.12)

1.3. Bounded homogeneous operators

We shall deal not only with continuous linear operators, but, more gener­
ally, with bounded homogeneous operators (briefly, H operators), i.e., opera­
tors A satisfying

(i) A(Au) = AAu; Aa scalar,

(ii) A maps bounded sets onto bounded sets.

We can associate with such an operator its norm

IIAII = sup IIAul1 = sup~
!Iull<;;;l u#O II u II

and its kernel

ker A = {u such that Au = O},

which is a symmetric cone.

We say that an H operator A is a projector if A2 = A.

2. BEST ApPROXIMATION AND STABILIZATION PROJECTORS

(1.13)

(1.14)

(1.15)

2.1. Best approximation projectors

Let P be a closed subspace of a Banach space V and consider the number

infll u - v II.
VEP

(2.1)

If P is a reflexive subspace of V, this inf is achieved on P at least once, and
there exists at most one point of P achieving this minimum if V is strictly
convex (see Ref. [6]). Therefore, when V is a strictly convex reflexive Banach
space, there exists a unique point tu = tpu E P achieving the minimum (2.1)
and we call t = tp the best approximation projector onto P.

Let us recall the following

LEMMA 2.1 The best approximation projector t is an H projector satisfying

III - til = 1. (2.2)
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We set

plifJ = ker t = (1 - t) V.

We also recall the following (see Ref. [8]):

435

(2.3)

LEMMA 2.2. If V is an R.S. space, the best approximant tu is characterized
by

tUEP and J(u - tu) E pl.. (2.4)

Therefore, J maps PIifJ onto pl. and Ponto pl.lifJ.

2.2. Stabilization projectors

Let us consider the number

A = sup cos(u, v) = sup (Ju, v)
VEP VEP II U II~-l II v II (2.5)

we can restrict v to belong to the unit sphere of V. Observe that cos(u, v) = 0
on P iff u belongs to PIifJ. Otherwise, the supremum is positive.

If P is a reflexive subspace, this sup is achieved at least once on the unit
sphere. On the other hand, the set of points of the unit sphere of P achieving
this sup is convex. Indeed, if Vo and VI are such points, set

Then

v =
~

(1 - ex) Vo + exv1
11(1 - ex) Vo + exvl II '

(2.6)

This implies that 11(1 - ex)vo+ exvlll ;;:: 1 and that v~ also achieves the sup.
Therefore, as in the best approximation problem, there exists a unique

point So(u) = spO(u) of the unit sphere of P achieving the sup in (2.5), when V
is a strictly convex reflexive Banach space.

In this case, we set

1
0 iff u EO plifJ,

SU = sp~(u) = II u II cos(u, spO(U»~'-1 spO(u) otherwise, (2.7)

and we call sp~ the ex-stabilization projector onto P. Indeed, as one can check,
we have

LEMMA 2.3. The operator sp~, defined by (2.7), is an H projector ofnorm 1,
satisfying

II Sp~U II~-l = cos(u, Sp~u) II U II~-l ~ II UII~-l (2.8)
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and

AUBIN

(2.9)

When V is a Hilbert space (and a = 2) the best approximation operator
and the stabilization projector coincide with the orthogonal projector onto P
(see the remark following Lemma 1.2). When V is an R.S. space, then, as
we shall see, in some sense spa is the "adjoint" of tp .

THEOREM 2.1. Let V be an R.S. space, P a closed subspace of V, and pJ.
its annihilator. Let J = Jva be the a-duality mapping from V onto V'. Then
the stabilization projector s = spa onto P and the best approximation projector
tJ. = tpl. onto P\ in V', are related by the formula

s = J-1(1 - tJ.)J. (2.10)

Indeed, to maximize cos(u, v) on P amounts to maximizing, on P, the
function

I(Ju v)la-1 (Ju v)
p(v) = II u Ila(a-11 I cos(u, v)!a-1 cos(u, v) = 'II vila ' ,(2.11)

where u ¢ Pffi. Since Vis smooth, the functional p(v) is GiHeaux-differentiable
at every point v*-O and its derivative at Vo is

(2.12)

Let Vo = spo(u) be the point of the unit sphere of P achieving the sup of p(v)
on P. Since p(v) ~ p(vo) for any v in P, we deduce that (Lvo, v) = 0 for any
such v, and thus, that Lvo belongs to pJ.. In other words, there exists an f
belonging to pJ. such that

Ju - (Ju, vo) Jvo = f (2.13)

But since Ju - f = (Ju, vo) Jvobelongs to PJ.ffi (by the Lemma 2.2), we deduce
that f = tJ.Ju = tpl.Ju. Therefore, (Ju, vo) Jvo = (1 - tJ.) Ju and, since
Vo = spO(u),

Conversely, let us assume that sp''' is defined by

(2.14)
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If u belongs to PeB, it follows that sp"'(u) = O. Otherwise,
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(Jsp"(U) - Ju, v) = -(t.LJu, v) = 0

Taking v = sp"(u), we get

for any v in P.

(Ju, sp"(u))
cos(u, sp"(u)) = II U 11"-1 II sp"(u)II

(Jsp"(U), sp"(u))

II sp"(u)1111 u 11"-1
II sp"(u)II"-1

II u 11"-1

and (2.8) is satisfied. On the other hand, sp"(u) maximizes cos(u, v) on P, since

I(Ju, v)1 I(Jsp"(u), v)\ II sp"(u)II"-1
Icos(u, v)1 = II u 11"-1 II v II = II u 11"-111 v II ~ II U11"-1 = cos(u, sp"u).

Therefore, sp"(u), defined by (2.14), satisfies (2.7).

Remark 2.1. If V is a Hilbert space, 1 - t.L is equal to the transpose t'
ofthe orthogonal projector tonto P, and J-1t'J is the adjoint of the operator t.
Since t is self-adjoint, s = t.

2.3. Characterization of the best approximation projectors

Suppose a closed subspace R is the kernel of a continuous linear operator r,
mapping V onto a Banach space E,

R = ker r; r E .!l'(V, E); reV) = E; (2.15)

we shall prove a formula expressing the best approximation projector t = tR

on R in terms of r and the duality mapping J from V onto V'.

THEOREM 2.2. Assume (2.15) and that V is an R.S. space. Then the best
approximation projector t = tR onto R satisfies

t = (1 - pr),

where p is the H operator from E onto ReB, defined by

p = J-lr'(rJ-lr ')-I.

(2.16)

(2.17)

The proof is quite obvious. We have, first of all, to verify that rJ-lr' is
invertible. But this is a consequence of Lemma 1.2, which implies that
rJ-lr ' is the duality mapping from E' onto E, when E' is equipped with the
norm II e' liE' = II r'e' Ilv' , and E, with its dual norm. By a theorem of Banach,
E is an R.S. space. Therefore, by Lemma 1.1, rJ-lr ' is invertible, and the
formula (2.17) is meaningful. Thus, tu belongs to R since

rtu = ru - rpru = 0,



438 AUBIN

and tu is the best approximant of u since, by Lemma 2.2, J(u - tu) =
J(pru) = r'(rJ-1r')-1 belongs to r'E' = Ri..

Incidentally, we solve the problem of "optimal interpolation" in Banach
spaces (see, e.g., Ref. [1]) which amounts to finding a right inverse of r
having "minimal norm."

For this purpose, let us associate with r and the norm of V the following
norm on E:

I(e', e)j
II e liE = sup II ' , II .

e'EE' rev'

For this norm, r is an operator of norm 1. Therefore:

(2.18)

COROLLARY 2.1. Let r be a given operator from an R.S. space V onto a
Banach space E, equipped with the norm (2.18). Then

is a right inverse of r,

rpe = e for any e E E,

P is an H-isometry,

II pe Ilv = II e liE for any e E E,

and

(2.19)

(2.20)

(2.21)

II pe Ilv :::;; II u Ilv for any u such that ru = e. (2.22)

Indeed, II e liE, defined by (2.18), is nothing else than the dual norm of
II e' liE = II r'e' Ilv' . Therefore, we can set

Then (2.21) follows from

and (2.22) follows from

II pe II'" = (JE"'e, e) = (JE"'e, ru) = (r'JE"'e, u)

= (Jpe, u) :::;; II pe [[",-I II u II.

Let us extend this result to general normed linear spaces. Assume that

(i) E is reflexive;
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(ii) There exists a duality mapping L = LOJ.v' from V' into V" (2.23)
such that Lr'E' C V.

By Lemma 1.2, LE = rLr' is a duality mapping from E' onto E (by Ref. [4]).
Among the duality mappings from E onto E', let us denote by JE the one
which satisfies

foranyeEE. (2.24)

COROLLARY 2.2. Let R = ker r be a closed subspace of a normed linear
space V, where r maps V onto E. If we assume (2.23), the operator p, mapping
E into V, defined by

(2.25)

satisfies the properties (2.20), (2.21), and (2.22) of Corollary 2.t.

Remark 2.2. In the same way as in Ref. [1], we can extend the last
corollary to the case where V is equipped with a seminorm p(v), instead of
a norm 1111.

2.4. Characterization of the stabilization projector

Let us assume now that a closed subspace P of V is the range of an iso­
morphism p from a Banach space E into V.

We shall compute the stabilization projector s = spa. in terms of p and of
the duality mapping J = Jva. from Vonto v r

•

THEOREM 2.3. If V is an R.S. space, the stabilization projector s onto
P = pE is given by

s = pr, (2.26)

where r = rOJ. is the H operator from V onto E with ker r = p(£i, defined by

r = (p'Jp)-l p'J. (2.27)

First of all, p'Jp is equal to the duality mapping JE = JEa. of E when it is
supplied with the norm II ell = II pe II (Lemma 1.2). Therefore (p' Jp)"i = J~' ,
and thus rp = 1, and s = pr is an H projector onto P.

Since p~ = ker p', we deduce from Theorem 2.2 that

1 - t~ = Jp(p'Jp)-l p',

and thus

Theorem 2.1 implies that s is the stabilization projector onto P.
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COROLLARY 2.3. Among the left-inverse H operators ofp, the operator r,
defined by (2.27), is the one which achieves the minimal norm (equal to one).

Indeed, II ru liE = Ilpru Ilv = II su Ilv ~ II u II, by Lemma 2.3. Therefore,
II r II = 1, and any left inverse ofp has a norm greater than one. Let us notice
the following formula.

COROLLARY 2.4. The operator r, defined by (2.27), is related to p by

II ru II~-l
cosv(u, pe) = II u II~-l cos(ru, e); U E V, e EE. (2.28)

3. CHARACTERIZATION OF THE ERROR AND STABILITY FUNCTIONS

3.1. Stability functions and error functions of a subspace P

Let us consider two Banach spaces U and V such that

U is contained in V with a stronger topology; U is dense in V. (3.1)

Let P be a closed subspace of U and V. We associate with P the following
functionals:

(i) the error function

euV(P) = sup inf II u - v Ilv
ueu veP II uIlu

(ii) the stability function

SUV(P) = sup~ .
vep II v Ilv

There is a dual relation between these two functionals.

(3.2)

(3.3)

(3.4)

THEOREM 3.1. Let us Assume (3.1) and let pJ.. be the annihilator ofP. Then

(i) euv(p) = S&:(pJ..);

(ij) suv(P) = e&:(PJ..).

Indeed, let

(i) j be the canonical injection from U into V;

(ii) rp be the canonical surjection from Vonto VIP.
(3.5)
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Then euV(P) is the norm, in 2'(U, VIP), ofthe operator cp • j. By transposition,
euV(P) is the norm of j' cp' in 2'(VIP)', U').

But (VIP), is isometric to P-\ and so cp' can be identified with the canonical
injection from p.l into V'. Since U is dense in V, we can identify V' with
a subspace of U', and j' becomes the canonical injection from U'into V'.
Therefore

Yep) II'" II Ilfllu' V' (p.l)eu = ] cp !l'(P.l,U') = sup -llfll = su' .
f€P.l v'

One can prove (3.4(ii)) in the same way.

3,2. Computation of the norm ofan operator

Let X and Y be R.S. spaces, Z a Banach space, and

(i) A a linear operator from Z into X;

(ii) B an isomorphism from Z into Y.

Let us set

IIAullx
dCA, B) = sup II B II .

ueZ U Y

(3.6)

(3.7)

By Lemma 1.2, the operator B'Jy"B, mapping Z into Z', is invertible, since
it is actually the duality mapping of Z, equipped with the norm II Bu Ily .

We shall need the following:

THEOREM 3.2. Assume that the sup in (3.7) is achieved at a point Uo satis­
fying II Buo Ily = 1. Then dCA, B) is the a'-th root of the largest eigenvalue of
the operator (B'Jy"B)-l (A'Jx"A),

(B'ly"B)-l (A'Jx"A) Uo = dCA, B)'" UO ; II Buo Ily = 1. (3.8)

Consider the functional

II Avll~
p(v) = II Bv II~ . (3.9)

Since X and Yare smooth, this functional has a Gateaux derivative Lu (for
u "* 0) satisfying

Lu = II Bu II~ A'Jx"Au -II Au II~ B'Jy"Bu
IIBull~

By hypothesis, there exists Uo such that

II Buo Ity = 1; dCA, B)" = p(uo) ;?: p(v) for any v"* o.
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(3.10)

Therefore, for any v7'=- 0, (Luo , v) = °and thus,

Luo = A'J~~Auo - dCA, B)~ B'Jy~Buo = 0.

Hence dCA, Br is an eigenvalue of the operator (B'Jy~B)-1A'Jx~A. It is the
largest one, since if d~' is any positive eigenvalue, we deduce from

the equality

II Au Ilx = d~11 Bu II~·

Remark 3.1. We shall apply, in a forthcoming paper, this kind of result
to the problem of existence of eigenvalues of nonlinear operators.

3.3. Characterization of the stability and error functions

Let U and V be R.S. spaces such chat

U C V, he injection being compact and dense,

and let K = Ku~ and J = Jv~ be the duality mappings of U and V, respec­
tively.

Let P be a closed subspace of V.
Let t = tp be the best-approximation projector onto P (in V), P$ = ker t,

and s = sp~ the stabilization projector onto P (in V).

THEOREM 3.3. Let us assume (3.10). Then euV(P) is the ex'-th root of the
largest eigenvalue of the operator (1 - t) K-IJ(l - t), mapping prJY into itself,

Furthermore, if we assume

UEP$. (3.11)

Pis a finite-dimensional subspace contained in U such that KP C V', (3.12)

then suV(P) is the ex'-th root of the largest eigenvalue of the operator sJ-IKs,
mapping P into itself,

V E P. (3.13)

Let us write P = ker r, where r is a continuous linear operator from V
onto a Banach space E(for instance, we can take E = VIP and r the canon­
ical surjection from V onto VIP). Then p.l = r'E' and, by Theorem 3.1,

e V(P)~' = SV;(P)~' = sup II r'e 11r;, .
u u , II r'e II~' ,

eEE v'
~+J,=1.

ex ex
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By (3.10), the injection from V' into U' is compact and the sup is achieved
at some point e. Therefore, by Theorem 3.2, euV(P)ct is the largest eigenvalue
of

or, equivalently, of the operator

(3.14)

since r' is an isomorphism from E' onto p.l and J is a bijection from
V onto V'.

Therefore, U = J-1r'e belongs to PEfJ (by Lemma 2.2), and we can write
(3.14) in the form

by Theorem 2.2.
Let us now assume (3.12) and write P = pE, where p is an isomorphism

from E onto P (we can choose, for instance, E = P, and p the canonical
injection).

Since the dimension of P is finite, the supremum in

suV(P)ct = sup II pe II'U
eEE II pe ll~

(3.15)

is achieved at some point e. Therefore, by Theorem 3.2, suV(P)ct' is the largest
eigenvalue of the operator

(3.16)

or, equivalently, of the operator

(3.17)

since p is an isomorphism from E onto P and since JJ-1 is the identity on
KP, by (3.12). Therefore u = pe belongs to P, su = u, and, by Theorem 2.3,
we can write (3.17) in the form

UE P.

COROLLARY 3.1. Let Ube an eigenvector of(1 - t) K-1J(l - t), associated
with euV(P)ct'. Then u belongs also to PEfJ.
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Indeed, if v belongs to P, we have

II u + v - t(u + v)ll~ s::::~ ,,;:: II u + (v - t(u + v))II~

II u + v II~ ~ II u II~ ~ II u II~

Therefore, II u II~ ~ II u + v II~ for any v in U.
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