Optimal Approximation and Characterization of the Error and Stability Functions in Banach Spaces*

Jean Pierre Aubin ${ }^{\dagger}$
Department of Mathematics, Purdue University, Lafayette, Indiana 47907

Communicated by John R. Rice
Received April 24, 1969

Introduction

In several problems of approximation theory we have to use the error function and the stability function of a space P of approximants. (See, e.g. Refs. [2] and [7]). Namely, suppose U and V are Banach spaces such that

$$
\begin{equation*}
U \subset V \text { and the injection is compact and dense. } \tag{1}
\end{equation*}
$$

Let P be a closed subspace of V. We define the error function by

$$
\begin{equation*}
e_{V}^{V}(P)=\sup _{u \in U} \inf _{v \in P} \frac{\|u-v\|_{V}}{\|u\|_{U}} . \tag{2}
\end{equation*}
$$

If P is finite-dimensional, we define the stability function by

$$
\begin{equation*}
s_{U}^{v}(P)=\sup _{u \in P} \frac{\|u\|_{U}}{\|u\|_{V}} . \tag{3}
\end{equation*}
$$

($S_{U}{ }^{r}(P)$ is finite, since all norms on a finite-dimensional space are equivalent). The motiviation for the present paper was the study of these functions.

First of all, they are related by the following duality relation:

$$
\begin{equation*}
e_{U}^{V}(P)=s_{U^{\prime}}^{V^{\prime}}\left(P^{\perp}\right) ; \quad s_{U}^{V}(P)=e_{U^{\prime}}^{V^{\prime}}\left(P^{\perp}\right), \tag{4}
\end{equation*}
$$

where U^{\prime}, V^{\prime} are the duals of U and V, respectively, and P^{\perp} is the annihilator of P. On the other hand, they are eigenvalues of certain nonlinear operators (which are linear in case U and V are Hilbert spaces). For the sake of simpli-

[^0]city, we shall restrict our study to the case where U and V are smooth, uniformly convex, reflexive Banach spaces. In this case, there exists a unique duality mapping J from V onto V^{\prime} (resp., K from U onto U^{\prime}) which is the one-to-one nonlinear mapping J defined by
\[

$$
\begin{equation*}
(J u, u)=\|u\|_{V}^{2} ; \quad\|J u\|_{V^{\prime}}=\|u\|_{V} . \tag{5}
\end{equation*}
$$

\]

Then if t is the (nonlinear) best approximation projector from V onto P, defined by

$$
\begin{equation*}
\|u-t u\|_{\nu}=\inf _{v \in P}\|u-v\|_{\nu}, \tag{6}
\end{equation*}
$$

the error function is the square root of the largest eigenvalue of the operator $(1-t) K^{-1} J(1-t)$.

In order to characterize the stability function, we have to introduce another nonlinear projector s from V onto P (the stabilization projector). If we define the cosine of the angle between two elements, u and v, of V by

$$
\begin{equation*}
\cos (u, v)=\frac{(J u, v)}{\|u\|\|v\|} \tag{7}
\end{equation*}
$$

then the projector s is defined by

$$
\begin{equation*}
\cos (u, s u)=\sup _{v \in P} \cos (u, v) ; \quad\|s u\|=\cos (u, s u)\|u\| . \tag{8}
\end{equation*}
$$

These projectors s and t are linked by the following duality relation:

$$
\begin{equation*}
s=J^{-1}\left(1-t^{\perp}\right) J, \tag{9}
\end{equation*}
$$

where t^{\perp} is the best approximation projector from V^{\prime} onto P^{\perp}.
When V is a Hilbert space, formula (9) shows that s is the (Hilbertian) adjoint of $t ; s$ coincides with t, since the orthogonal projectors are the ones which are self-adjoint.

We shall prove, in general, that if P is a finite-dimensional subspace of U, the stability function is the square root of the largest eigenvalue of the operator $s J^{-1} \mathrm{Ks}$. Incidentally, we shall prove the following two formulas. If $P=\operatorname{ker} r$ is the kernel of a continuous linear operator from V onto a Banach space E, then

$$
t=1-p r, \quad \text { where } \quad p=J^{-1} r^{\prime}\left(r J^{-1} r^{\prime}\right)^{-1}
$$

and if $P=p E$ is the closed range of a linear isomorphism from a Banach space E into E, then

$$
s=p r, \quad \text { where } \quad r=\left(p^{\prime} J p\right)^{-1} p^{\prime} J
$$

1. Duality Mapping and Cosines

1.1. Duality mapping

Let us recall the definition of the duality mapping from a Banach space V into its dual V^{\prime} (see Refs. [3, 4]).

By the Hahn-Banach theorem, we can associate with any u of the unit sphere of V a continuous linear form $J u$ of the unit sphere of its dual V^{\prime} such that

$$
\begin{equation*}
(J u, u)=1 ; \quad\|J u\|_{*}=1 \tag{1.1}
\end{equation*}
$$

and we shall choose $J u$ so that

$$
\begin{equation*}
J(-u)=-J(u) \tag{1.2}
\end{equation*}
$$

Here (f, v) denotes the duality pairing on $V^{\prime} \times V,\| \|$ is the norm of V, and $\left\|\|_{*}\right.$ is its dual norm.

We shall extend this mapping J, defined on the unit sphere, to all of V. Let $\alpha>1$. We set

$$
\begin{equation*}
J u=J_{V}^{\alpha} u=\|u\|^{\alpha-1} J\left(\frac{u}{\|u\|}\right) ; \quad J(0)=0 \tag{1.3}
\end{equation*}
$$

Such an operator is called an $(\alpha-)$ duality mapping from V into V^{\prime} and satisfies

$$
\begin{equation*}
\|J u\|_{*}=\|u\|^{\alpha-1} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
(J u, u)=\|u\|^{\alpha} \tag{ii}
\end{equation*}
$$

(iii) $\quad(J u-J v, u-v) \geqslant(\|u\|-\|v\|)\left(\|u\|^{\alpha-1}-\|v\|^{\alpha-1}\right) \geqslant 0$;

$$
\begin{equation*}
J(\lambda u)=|\lambda|^{\alpha-2} \lambda J u \tag{iv}
\end{equation*}
$$

We are mainly interested in the case where there exists a unique bijective duality mapping from V onto V^{\prime}. This is the case when V is a smooth, strictly convex, reflexive Banach space (briefly, an R.S. space), where
(i) A space V is smooth iff each point of its unit sphere possesses a unique supporting hyperplane (equivalently: iff the norm $\|u\|$ is Gâteauxdifferentiable at each point of the unit sphere);
(ii) A space V is strictly convex (or rotund) iff its unit sphere does not contain any line segment.

Let us recall (see Ref. [5]) that a reflexive Banach space is smooth iff its dual is strictly convex. Therefore, we have

Lemma 1.1. Let V be an R.S. space. Then there exists a unique α-duality
mapping $J=J_{V}{ }^{\alpha}$ which is one-to-one from V onto V^{\prime}, and which is equal to the Gâteaux derivative of the functional $1 / \alpha\|v\|^{\alpha}$. Moreover,

$$
\begin{equation*}
\left(J_{V}^{\alpha}\right)^{-1}=J_{V^{\prime}}^{\alpha^{\prime}}, \quad \text { where } \quad \frac{1}{\alpha}+\frac{1}{\alpha^{\prime}}=1 \tag{1.5}
\end{equation*}
$$

The Lebesgue spaces L^{α} and the Sobolev spaces $W^{m, \alpha}$ are R.S. spaces for $1<\alpha<+\infty$. The α-duality mapping of L^{α} is the map $J u=|u|^{\alpha-2} u$. A closed subspace and a factor space of an R. S. space are also R.S. spaces. The following lemma provides a tool for constructing duality mappings.

Lemma 1.2. Let φ_{k} be a continuous linear operator from a space V into an R.S. space $E_{k i}(k=0, \ldots, m)$ and let V be a Banach space for the norm

$$
\begin{equation*}
\|v\|=\left(\sum_{k=0}^{m}\left\|\varphi_{k} v\right\|_{E_{k_{k}}}^{\alpha}\right)^{1 / \alpha}, \quad \alpha>1 \tag{1.6}
\end{equation*}
$$

Then V is also an R.S. space. If J_{k} is the α-duality mapping from E_{k} onto $E_{k}{ }^{\prime}$, the α-duality mapping of V is

$$
\begin{equation*}
J_{V}{ }^{\alpha}=\sum_{k=0}^{m} \varphi_{k}^{\prime} J_{E_{k}}^{\alpha} \varphi_{k} \tag{1.7}
\end{equation*}
$$

where $\varphi_{k}{ }^{\prime}$ denotes the transpose of φ_{k}.
If V is a Hilbert space with the inner product $((u, v))$, the 2-duality mapping from V onto V^{\prime} is nothing else than the canonical isomorphism of the Riesz-Fischer theorem defined by

$$
\begin{equation*}
(J u, v)=((u, v)) ; \quad J \in \mathscr{L}\left(V, V^{\prime}\right) \tag{1.8}
\end{equation*}
$$

1.2. Cosine of two vectors of an R.S. space

We extend the usual definition of the cosine of the angle between two vectors of a Hilbert space in the following way: If V is an R.S. space we define

$$
\begin{equation*}
\cos (u, v)=\cos _{V}(u, v)=\frac{\left(J_{V^{\alpha}} u, v\right)}{\|u\|^{\alpha-1}\|v\|}=\frac{\left(J_{V}^{\beta} u, v\right)}{\|u\|^{\beta-1}\|v\|} ; \quad \alpha>1 ; \quad \beta>1 \tag{1.9}
\end{equation*}
$$

It is a non-symmetric functional on $V \times V$ satisfying

$$
\begin{equation*}
|\cos (u, v)| \leqslant 1 ; \quad \cos (\lambda u, \mu v)=\cos (u, v) \quad \text { for } \quad \lambda, \mu \geqslant 0 \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos _{V}(u, v)=\cos _{V^{\prime}}(J v, J u) \tag{1.11}
\end{equation*}
$$

Remark 1.1. If V is a normed linear space, we can also define the cosine
of the angle between two vectors, u and v, of the unit ball in the following way:

$$
\begin{equation*}
\cos _{v}(u, v)=\lim _{\substack{\theta \rightarrow 0 \\ \theta>0}} \frac{(\|u+\theta v\|-\|u\|)}{\theta} \tag{1.12}
\end{equation*}
$$

1.3. Bounded homogeneous operators

We shall deal not only with continuous linear operators, but, more generally, with bounded homogeneous operators (briefly, H operators), i.e., operators A satisfying
(i) $A(\lambda u)=\lambda A u ; \quad \lambda$ a scalar,
(ii) A maps bounded sets onto bounded sets.

We can associate with such an operator its norm

$$
\begin{equation*}
\|A\|=\sup _{\|u\| \leqslant 1}\|A u\|=\sup _{u \neq 0} \frac{\|A u\|}{\|u\|} \tag{1.14}
\end{equation*}
$$

and its kernel

$$
\begin{equation*}
\text { ker } A=\{u \text { such that } A u=0\} \tag{1.15}
\end{equation*}
$$

which is a symmetric cone.
We say that an H operator A is a projector if $A^{2}=A$.

2. Best Approximation and Stabilization Projectors

2.1. Best approximation projectors

Let P be a closed subspace of a Banach space V and consider the number

$$
\begin{equation*}
\inf _{v \in P}\|u-v\| . \tag{2.1}
\end{equation*}
$$

If P is a reflexive subspace of V, this inf is achieved on P at least once, and there exists at most one point of P achieving this minimum if V is strictly convex (see Ref. [6]). Therefore, when V is a strictly convex reflexive Banach space, there exists a unique point $t u=t_{P} u \in P$ achieving the minimum (2.1) and we call $t=t_{P}$ the best approximation projector onto P.

Let us recall the following
Lemma 2.1 The best approximation projector t is an H projector satisfying

$$
\begin{equation*}
\|1-t\|=1 \tag{2.2}
\end{equation*}
$$

We set

$$
\begin{equation*}
P^{\oplus}=\operatorname{ker} t=(1-t) V \tag{2.3}
\end{equation*}
$$

We also recall the following (see Ref. [8]):
Lemma 2.2. If V is an R.S. space, the best approximant tu is characterized by

$$
\begin{equation*}
t u \in P \quad \text { and } \quad J(u-t u) \in P^{\perp} \tag{2.4}
\end{equation*}
$$

Therefore, J maps P^{\oplus} onto P^{\perp} and P onto $P^{\perp \oplus}$.

2.2. Stabilization projectors

Let us consider the number

$$
\begin{equation*}
\lambda=\sup _{v \in P} \cos (u, v)=\sup _{v \in P} \frac{(J u, v)}{\|u\|^{\alpha-1}\|v\|} \tag{2.5}
\end{equation*}
$$

we can restrict v to belong to the unit sphere of V. Observe that $\cos (u, v)=0$ on P iff u belongs to $P \oplus$. Otherwise, the supremum is positive.

If P is a reflexive subspace, this sup is achieved at least once on the unit sphere. On the other hand, the set of points of the unit sphere of P achieving this sup is convex. Indeed, if v_{0} and v_{1} are such points, set

$$
v_{\alpha}=\frac{(1-\alpha) v_{0}+\alpha v_{1}}{\left\|(1-\alpha) v_{0}+\alpha v_{1}\right\|}, \quad 0 \leqslant \alpha \leqslant 1
$$

Then

$$
\begin{equation*}
\cos \left(u, v_{\alpha}\right)=\frac{\lambda}{\left\|(1-\alpha) v_{0}+\alpha v_{1}\right\|} \leqslant \lambda . \tag{2.6}
\end{equation*}
$$

This implies that $\left\|(1-\alpha) v_{0}+\alpha v_{1}\right\| \geqslant 1$ and that v_{α} also achieves the sup.
Therefore, as in the best approximation problem, there exists a unique point $s^{0}(u)=s_{P}^{0}(u)$ of the unit sphere of P achieving the sup in (2.5), when V is a strictly convex reflexive Banach space.

In this case, we set

$$
s u=s_{P}^{\alpha}(u)=\left\{\begin{array}{l}
0 \quad \text { iff } \quad u \in P^{\oplus}, \tag{2.7}\\
\|u\| \cos \left(u, s_{P}^{0}(u)\right)^{\alpha^{\prime}-1} s_{P}^{0}(u) \quad \text { otherwise },
\end{array}\right.
$$

and we call ${s_{P}}^{\alpha}$ the α-stabilization projector onto P. Indeed, as one can check, we have

Lemma 2.3. The operator $s_{P}{ }^{\alpha}$, defined by (2.7), is an H projector of norm 1 , satisfying

$$
\begin{equation*}
\left\|s_{P}^{\alpha} u\right\|^{\alpha-1}=\cos \left(u, s_{P}^{\alpha} u\right)\|u\|^{\alpha-1} \leqslant\|u\|^{\alpha-1} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ker} s_{P}^{\alpha}=\left(1-s_{P}^{\alpha}\right) V=P^{\oplus} . \tag{2.9}
\end{equation*}
$$

When V is a Hilbert space (and $\alpha=2$) the best approximation operator and the stabilization projector coincide with the orthogonal projector onto P (see the remark following Lemma 1.2). When V is an R.S. space, then, as we shall see, in some sense $s_{P}{ }^{\alpha}$ is the "adjoint" of t_{p}.

Theorem 2.1. Let V be an R.S. space, P a closed subspace of V, and P^{\perp} its annihilator. Let $J=J_{V}{ }^{\alpha}$ be the α-duality mapping from V onto V^{\prime}. Then the stabilization projector $s=s_{P}{ }^{\alpha}$ onto P and the best approximation projector $t^{\perp}=t_{P^{\perp}}$ onto P^{\perp}, in V^{\prime}, are related by the formula

$$
\begin{equation*}
s=J^{-1}\left(1-t^{\perp}\right) J \tag{2.10}
\end{equation*}
$$

Indeed, to maximize $\cos (u, v)$ on P amounts to maximizing, on P, the function

$$
\begin{equation*}
\rho(v)=\|u\|^{\alpha(\alpha-1)}|\cos (u, v)|^{\alpha-1} \cos (u, v)=\frac{|(J u, v)|^{\alpha-1}(J u, v)}{\|v\|^{\alpha}} \tag{2.11}
\end{equation*}
$$

where $u \notin P^{\oplus}$. Since V is smooth, the functional $\rho(v)$ is Gâteaux-differentiable at every point $v \neq 0$ and its derivative at v_{0} is

$$
\begin{equation*}
L v_{0}=\frac{\left\|v_{0}\right\|^{\alpha}\left|\left(J u, v_{0}\right)\right|^{\alpha-1} J u-\left|\left(J u, v_{0}\right)\right|^{\alpha-1}\left(J u, v_{0}\right) J v_{0}}{\left\|v_{0}\right\|^{2 \alpha}} \tag{2.12}
\end{equation*}
$$

Let $v_{0}=s_{p}{ }^{0}(u)$ be the point of the unit sphere of P achieving the sup of $\rho(v)$ on P. Since $\rho(v) \leqslant \rho\left(v_{0}\right)$ for any v in P, we deduce that $\left(L v_{0}, v\right)=0$ for any such v, and thus, that $L v_{0}$ belongs to P^{\perp}. In other words, there exists an f belonging to P^{\perp} such that

$$
\begin{equation*}
J u-\left(J u, v_{0}\right) J v_{0}=f \tag{2.13}
\end{equation*}
$$

But since $J u-f=\left(J u, v_{0}\right) J v_{0}$ belongs to $P^{\perp \oplus}$ (by the Lemma 2.2), we deduce that $f=t^{\perp} J u=t_{P \perp} J u$. Therefore, $\left(J u, v_{0}\right) J v_{0}=\left(1-t^{\perp}\right) J u$ and, since $v_{0}=s_{P}{ }^{0}(u)$,

$$
J^{-1}\left(1-t^{\perp}\right) J u=\left|\left(J u, v_{0}\right)\right|^{\alpha^{\prime}-2}\left(J u, v_{0}\right) v_{0}=s_{P}^{\alpha}(u)
$$

Conversely, let us assume that $s_{P}{ }^{\alpha}$ is defined by

$$
\begin{equation*}
J s_{P}{ }^{\alpha}(u)=\left(1-t^{\perp}\right) J u \tag{2.14}
\end{equation*}
$$

If u belongs to P^{\oplus}, it follows that $s_{P}^{\alpha}(u)=0$. Otherwise,

$$
\left(J s_{P}^{\alpha}(u)-J u, v\right)=-\left(t^{\perp} J u, v\right)=0 \quad \text { for any } \quad v \text { in } P
$$

Taking $v=s_{P}{ }^{\alpha}(u)$, we get

$$
\cos \left(u, s_{P}^{\alpha}(u)\right)=\frac{\left(J u, s_{P}^{\alpha}(u)\right)}{\|u\|^{\alpha-1}\left\|s_{P}^{\alpha}(u)\right\|}=\frac{\left(J s_{P}^{\alpha}(u), s_{P}^{\alpha}(u)\right)}{\left\|s_{P}^{\alpha}(u)\right\|\|u\|^{\alpha-1}}=\frac{\left\|s_{P}^{\alpha}(u)\right\|^{\alpha-1}}{\|u\|^{\alpha-1}}
$$

and (2.8) is satisfied. On the other hand, $s_{P}{ }^{\alpha}(u)$ maximizes $\cos (u, v)$ on P, since

$$
|\cos (u, v)|=\frac{|(J u, v)|}{\|u\|^{\alpha-1}\|v\|}=\frac{\left|\left(J s_{P}^{\alpha}(u), v\right)\right|}{\|u\|^{\alpha-1}\|v\|} \leqslant \frac{\left\|s_{P}^{\alpha}(u)\right\|^{\alpha-1}}{\|u\|^{\alpha-1}}=\cos \left(u, s_{P}^{\alpha} u\right)
$$

Therefore, $s_{P}{ }^{\alpha}(u)$, defined by (2.14), satisfies (2.7).
Remark 2.1. If V is a Hilbert space, $1-t^{\perp}$ is equal to the transpose t^{\prime} of the orthogonal projector t onto P, and $J^{-1} t^{\prime} J$ is the adjoint of the operator t. Since t is self-adjoint, $s=t$.

2.3. Characterization of the best approximation projectors

Suppose a closed subspace R is the kernel of a continuous linear operator r, mapping V onto a Banach space E,

$$
\begin{equation*}
R=\operatorname{ker} r ; \quad r \in \mathscr{L}(V, E) ; \quad r(V)=E \tag{2.15}
\end{equation*}
$$

we shall prove a formula expressing the best approximation projector $t=t_{R}$ on R in terms of r and the duality mapping J from V onto V^{\prime}.

Theorem 2.2. Assume (2.15) and that V is an R.S. space. Then the best approximation projector $t=t_{R}$ onto R satisfies

$$
\begin{equation*}
t=(1-p r) \tag{2.16}
\end{equation*}
$$

where p is the H operator from E onto R^{\oplus}, defined by

$$
\begin{equation*}
p=J^{-1} r^{\prime}\left(r J^{-1} r^{\prime}\right)^{-1} \tag{2.17}
\end{equation*}
$$

The proof is quite obvious. We have, first of all, to verify that $r J^{-1} r^{\prime}$ is invertible. But this is a consequence of Lemma 1.2, which implies that $r J^{-1} r^{\prime}$ is the duality mapping from E^{\prime} onto E, when E^{\prime} is equipped with the norm $\left\|e^{\prime}\right\|_{E^{\prime}}=\left\|r^{\prime} e^{\prime}\right\|_{V^{\prime}}$, and E, with its dual norm. By a theorem of Banach, E is an R.S. space. Therefore, by Lemma 1.1, $r J^{-1} r^{\prime}$ is invertible, and the formula (2.17) is meaningful. Thus, $t u$ belongs to R since

$$
r t u=r u-r p r u=0
$$

and $t u$ is the best approximant of u since, by Lemma $2.2, J(u-t u)=$ $J(p r u)=r^{\prime}\left(r J^{-1} r^{\prime}\right)^{-1}$ belongs to $r^{\prime} E^{\prime}=R^{\perp}$.

Incidentally, we solve the problem of "optimal interpolation" in Banach spaces (see, e.g., Ref. [1]) which amounts to finding a right inverse of r having "minimal norm."

For this purpose, let us associate with r and the norm of V the following norm on E :

$$
\begin{equation*}
\|e\|_{E}=\sup _{e^{\prime} \in E^{\prime}} \frac{\left|\left(e^{\prime}, e\right)\right|}{\left\|r^{\prime} e^{\prime}\right\|_{V^{\prime}}} . \tag{2.18}
\end{equation*}
$$

For this norm, r is an operator of norm 1. Therefore:
Corollary 2.1. Let r be a given operator from an R.S. space V onto a Banach space E, equipped with the norm (2.18). Then

$$
\begin{equation*}
p=J^{-1} r^{\prime}\left(r J^{-1} r^{\prime}\right)^{-1} \tag{2.19}
\end{equation*}
$$

is a right inverse of r,

$$
\begin{equation*}
r p e=e \quad \text { for any } \quad e \in E, \tag{2.20}
\end{equation*}
$$

p is an H-isometry,

$$
\begin{equation*}
\|p e\|_{V}=\|e\|_{E} \quad \text { for any } \quad e \in E \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\|p e\|_{V} \leqslant\|u\|_{V} \quad \text { for any } u \text { such that } r u=e \tag{2.22}
\end{equation*}
$$

Indeed, $\|e\|_{E}$, defined by (2.18), is nothing else than the dual norm of $\left\|e^{\prime}\right\|_{E}=\left\|r^{\prime} e^{\prime}\right\|_{V^{\prime}}$. Therefore, we can set

$$
J_{E}=J_{E}^{\alpha}=\left(J_{E}^{\alpha^{\prime}}\right)^{-1}=\left(r J^{-1} r^{\prime}\right)^{-1}
$$

Then (2.21) follows from

$$
\|p e\|^{\alpha}=(J p e, p e)=\left(r^{\prime} J_{E}^{\alpha} e, p e\right)=\left(J_{E}^{\alpha} e, e\right)=\|e\|_{E}^{\alpha},
$$

and (2.22) follows from

$$
\begin{aligned}
\|p e\|^{\alpha} & =\left(J_{E}^{\alpha} e, e\right)=\left(J_{E}^{\alpha} e, r u\right)=\left(r^{\prime} J_{E}^{\alpha} e, u\right) \\
& =(J p e, u) \leqslant\|p e\|^{\alpha-1}\|u\| .
\end{aligned}
$$

Let us extend this result to general normed linear spaces. Assume that
(i) E is reflexive;
(ii) There exists a duality mapping $L=L^{\alpha}{ }_{v^{\prime}}$ from V^{\prime} into $V^{\prime \prime}$ such that $L r^{\prime} E^{\prime} \subset V$.
By Lemma $1.2, L_{E}=r L r^{\prime}$ is a duality mapping from E^{\prime} onto E (by Ref. [4]). Among the duality mappings from E onto E^{\prime}, let us denote by J_{E} the one which satisfies

$$
\begin{equation*}
L_{E} J_{E} e=e \quad \text { for any } e \in E . \tag{2.24}
\end{equation*}
$$

Corollary 2.2. Let $R=\mathrm{ker} r$ be a closed subspace of a normed linear space V, where r maps V onto E. If we assume (2.23), the operator p, mapping E into V, defined by

$$
\begin{equation*}
p=J^{-1} r^{\prime} J_{E}, \tag{2.25}
\end{equation*}
$$

satisfies the properties (2.20), (2.21), and (2.22) of Corollary 2.1.
Remark 2.2. In the same way as in Ref. [1], we can extend the last corollary to the case where V is equipped with a seminorm $p(v)$, instead of a norm || \mid.

2.4. Characterization of the stabilization projector

Let us assume now that a closed subspace P of V is the range of an isomorphism p from a Banach space E into V.
We shall compute the stabilization projector $s=s_{P}{ }^{\alpha}$ in terms of p and of the duality mapping $J=J_{V}{ }^{\alpha}$ from V onto V^{\prime}.

Theorem 2.3. If V is an R.S. space, the stabilization projector s onto $P=p E$ is given by

$$
\begin{equation*}
s=p r \tag{2.26}
\end{equation*}
$$

where $r=r^{\alpha}$ is the H operator from V onto E with ker $r=P^{\oplus}$, defined by

$$
\begin{equation*}
r=\left(p^{\prime} J p\right)^{-1} p^{\prime} J . \tag{2.27}
\end{equation*}
$$

First of all, $p^{\prime} J p$ is equal to the duality mapping $J_{E}=J_{E}{ }^{\alpha}$ of E when it is supplied with the norm $\|e\|=\|p e\|\left(\text { Lemma 1.2). Therefore (} p^{\prime} J p\right)_{E}^{-1}=J_{\alpha^{\prime}}^{E^{\prime}}$, and thus $r p=1$, and $s=p r$ is an H projector onto P.
Since $P^{\perp}=\operatorname{ker} p^{\prime}$, we deduce from Theorem 2.2 that

$$
1-t^{\perp}=J p\left(p^{\prime} J p\right)^{-1} p^{\prime}
$$

and thus

$$
s=p r=J^{-1}\left(1-t^{\perp}\right) J .
$$

Theorem 2.1 implies that s is the stabilization projector onto P.

Corollary 2.3. Among the left-inverse H operators of p, the operator r, defined by (2.27), is the one which achieves the minimal norm (equal to one).

Indeed, $\|r u\|_{E}=\|p r u\|_{V}=\|s u\|_{V} \leqslant\|u\|$, by Lemma 2.3. Therefore, $\|r\|=1$, and any left inverse of p has a norm greater than one. Let us notice the following formula.

Corollary 2.4. The operator r, defined by (2.27), is related to p by

$$
\begin{equation*}
\cos _{v}(u, p e)=\frac{\|r u\|^{\alpha-1}}{\|u\|^{\alpha-1}} \cos (r u, e) ; \quad u \in V, \quad e \in E \tag{2.28}
\end{equation*}
$$

3. Characterization of the Error and Stability Functions

3.1. Stability functions and error functions of a subspace P

Let us consider two Banach spaces U and V such that

$$
\begin{equation*}
U \text { is contained in } V \text { with a stronger topology; } U \text { is dense in } V . \tag{3.1}
\end{equation*}
$$

Let P be a closed subspace of U and V. We associate with P the following functionals:
(i) the error function

$$
\begin{equation*}
e_{U}^{V}(P)=\sup _{u \in U} \inf _{v \in P} \frac{\|u-v\|_{V}}{\|u\|_{U}} \tag{3.2}
\end{equation*}
$$

(ii) the stability function

$$
\begin{equation*}
s_{U}^{V}(P)=\sup _{v \in P} \frac{\|v\|_{U}}{\|v\|_{V}} \tag{3.3}
\end{equation*}
$$

There is a dual relation between these two functionals.
Theorem 3.1. Let us Assume (3.1) and let P^{\perp} be the annihilator of P. Then
(i) $e_{U}{ }^{V}(P)=s_{U^{\prime}}^{V^{\prime}}\left(P^{\perp}\right) ;$
(ii) $s_{U}^{V}(P)=e_{U^{\prime}}^{V^{\prime}}\left(P^{\perp}\right)$.

Indeed, let
(i) j be the canonical injection from U into V;
(ii) φ be the canonical surjection from V onto V / P.

Then $e_{U}{ }^{V}(P)$ is the norm, in $\mathscr{L}(U, V / P)$, of the operator $\varphi \cdot j$. By transposition, $e_{U}{ }^{V}(P)$ is the norm of $j^{\prime} \varphi^{\prime}$ in $\left.\mathscr{L}(V / P)^{\prime}, U^{\prime}\right)$.

But $(V / P)^{\prime}$ is isometric to P^{\perp}, and so φ^{\prime} can be identified with the canonical injection from P^{\perp} into V^{\prime}. Since U is dense in V, we can identify V^{\prime} with a subspace of U^{\prime}, and j^{\prime} becomes the canonical injection from U^{\prime} into V^{\prime}. Therefore

$$
e_{U}{ }^{v}(P)=\left\|j^{\prime} \varphi^{\prime}\right\|_{\mathscr{L}\left(P \perp, U^{\prime}\right)}=\sup _{f \in P^{\perp}}\|f\|_{U^{\prime}}\|f\|_{V^{\prime}}=s_{U^{\prime}}^{V^{\prime}\left(P^{\perp}\right)}
$$

One can prove (3.4(ii)) in the same way.

3.2. Computation of the norm of an operator

Let X and Y be R.S. spaces, Z a Banach space, and
(i) A a linear operator from Z into X;
(ii) B an isomorphism from Z into Y.

Let us set

$$
\begin{equation*}
d(A, B)=\sup _{u \in \mathcal{Z}} \frac{\|A u\|_{X}}{\|B u\|_{Y}} . \tag{3.7}
\end{equation*}
$$

By Lemma 1.2 , the operator $B^{\prime} J_{Y}{ }^{\alpha} B$, mapping Z into Z^{\prime}, is invertible, since it is actually the duality mapping of Z, equipped with the norm $\|B u\|_{Y}$.

We shall need the following:
Theorem 3.2. Assume that the sup in (3.7) is achieved at a point u_{0} satisfying $\left\|B u_{0}\right\|_{Y}=1$. Then $d(A, B)$ is the α^{\prime}-th root of the largest eigenvalue of the operator $\left(B^{\prime} J_{Y}{ }^{\alpha} B\right)^{-1}\left(A^{\prime} J_{X}{ }^{\alpha} A\right)$,

$$
\begin{equation*}
\left(B^{\prime} J_{Y^{\alpha}}^{\alpha} B\right)^{-1}\left(A^{\prime} J_{X}^{\alpha} A\right) u_{0}=d(A, B)^{\alpha^{\prime}} u_{0} ; \quad\left\|B u_{0}\right\|_{Y}=1 \tag{3.8}
\end{equation*}
$$

Consider the functional

$$
\begin{equation*}
\rho(v)=\frac{\|A v\|_{X}^{\alpha}}{\|B v\|_{Y}^{\alpha}} . \tag{3.9}
\end{equation*}
$$

Since X and Y are smooth, this functional has a Gâteaux derivative $L u$ (for $u \neq 0$) satisfying

$$
L u=\frac{\|B u\|_{Y}^{\alpha} A^{\prime} J_{X}^{\alpha} A u-\|A u\|_{X}^{\alpha} B^{\prime} J_{Y}^{\alpha} B u}{\|B u\|_{Y}^{2 \alpha}} .
$$

By hypothesis, there exists u_{0} such that

$$
\left\|B u_{0}\right\|_{Y}=1 ; \quad d(A, B)^{\alpha}=\rho\left(u_{0}\right) \geqslant \rho(v) \text { for any } \quad v \neq 0 .
$$

Therefore, for any $v \neq 0,\left(L u_{0}, v\right)=0$ and thus,

$$
L u_{0}=A^{\prime} J_{X}^{\alpha} A u_{0}-d(A, B)^{\alpha} B^{\prime} J_{Y}^{\alpha} B u_{0}=0
$$

Hence $d(A, B)^{\alpha^{\prime}}$ is an eigenvalue of the operator $\left(B^{\prime} J_{Y}{ }^{\alpha} B\right)^{-1} A^{\prime} J_{X}{ }^{\alpha} A$. It is the largest one, since if $d^{\alpha^{\prime}}$ is any positive eigenvalue, we deduce from

$$
A^{\prime} J_{X}^{\alpha} A u=d^{\alpha} B^{\prime} J_{Y}^{\alpha} B u
$$

the equality

$$
\|A u\|_{X}^{\alpha}=d^{\alpha}\|B u\|_{Y}^{\alpha}
$$

Remark 3.1. We shall apply, in a forthcoming paper, this kind of result to the problem of existence of eigenvalues of nonlinear operators.

3.3. Characterization of the stability and error functions

Let U and V be R.S. spaces such that

$$
\begin{equation*}
U \subset V, \text { he injection being compact and dense, } \tag{3.10}
\end{equation*}
$$

and let $K=K_{U}{ }^{\alpha}$ and $J=J_{V}{ }^{\alpha}$ be the duality mappings of U and V, respectively.

Let P be a closed subspace of V.
Let $t=t_{P}$ be the best-approximation projector onto $P($ in $V), P^{\oplus}=\operatorname{ker} t$, and $s=s_{P}{ }^{\alpha}$ the stabilization projector onto P (in V).

Theorem 3.3. Let us assume (3.10). Then $e_{U}{ }^{V}(P)$ is the α^{\prime}-th root of the largest eigenvalue of the operator $(1-t) K^{-1} J(1-t)$, mapping P^{\oplus} into itself,

$$
\begin{equation*}
(1-t) K^{-1} J(1-t) u=e_{U}^{V}(P)^{\alpha^{\prime}} u ; \quad u \in P^{\oplus} \tag{3.11}
\end{equation*}
$$

Furthermore, if we assume

$$
\begin{equation*}
P \text { is a finite-dimensional subspace contained in } U \text { such that } K P \subset V^{\prime} \tag{3.12}
\end{equation*}
$$

then $s_{U}{ }^{\nu}(P)$ is the α^{\prime}-th root of the largest eigenvalue of the operator $s J^{-1} K s$, mapping P into itself,

$$
\begin{equation*}
s J^{-1} K s v=s_{U}^{v}(P)^{\alpha^{\prime}} v ; \quad v \in P \tag{3.13}
\end{equation*}
$$

Let us write $P=\operatorname{ker} r$, where r is a continuous linear operator from V onto a Banach space E (for instance, we can take $E=V / P$ and r the canonical surjection from V onto V / P). Then $P^{\perp}=r^{\prime} E^{\prime}$ and, by Theorem 3.1,

$$
e_{U}^{V}(P)^{\alpha^{\prime}}=s_{U^{\prime}}^{V^{\prime}}(P)^{\alpha^{\prime}}=\sup _{e \in E^{\prime}} \frac{\left\|r^{\prime} e\right\|_{V^{\prime}}^{\alpha^{\prime}}}{\left\|r^{\prime} e\right\|_{V^{\prime}}^{\alpha^{\prime}}} ; \quad \frac{1}{\alpha}+\frac{1}{\alpha^{\prime}}=1 .
$$

By (3.10), the injection from V^{\prime} into U^{\prime} is compact and the sup is achieved at some point e. Therefore, by Theorem 3.2, $e_{U}^{V}(P)^{\alpha}$ is the largest eigenvalue of

$$
\left(r J^{-1} r^{\prime}\right)^{-1} r K^{-1} r^{\prime} e=e_{U}^{V}(P)^{\alpha} e,
$$

or, equivalently, of the operator

$$
\begin{equation*}
J^{-1} r^{\prime}\left(r J^{-1} r^{\prime}\right)^{-1} r K^{-1} J J^{-1} r^{\prime} e=e_{U}^{V}(P)^{\alpha^{\prime}} \cdot J^{-1} r^{\prime} e \tag{3.14}
\end{equation*}
$$

since r^{\prime} is an isomorphism from E^{\prime} onto P^{\perp} and J is a bijection from V onto V^{\prime}.

Therefore, $u=J^{-1} r^{\prime} e$ belongs to P^{\oplus} (by Lemma 2.2), and we can write (3.14) in the form

$$
(1-t) K^{-1} J(1-t) u=e_{U}^{v}(P)^{\alpha^{\prime}} u
$$

by Theorem 2.2.
Let us now assume (3.12) and write $P=p E$, where p is an isomorphism from E onto P (we can choose, for instance, $E=P$, and p the canonical injection).

Since the dimension of P is finite, the supremum in

$$
\begin{equation*}
s_{U}^{V}(P)^{\alpha}=\sup _{e \in E} \frac{\|p e\|_{U}^{\alpha}}{\|p e\|_{V}^{\alpha}} \tag{3.15}
\end{equation*}
$$

is achieved at some point e. Therefore, by Theorem $3.2, s_{U}{ }^{V}(P)^{\alpha^{\prime}}$ is the largest eigenvalue of the operator

$$
\begin{equation*}
\left(p^{\prime} J p\right)^{-1} p^{\prime} K p e=s_{U}^{V}(P)^{\alpha^{\prime}} e \tag{3.16}
\end{equation*}
$$

or, equivalently, of the operator

$$
\begin{equation*}
p\left(p^{\prime} J p\right)^{-1} p^{\prime} J J^{-1} K p e=s_{U}^{V}(P)^{\alpha^{\prime}} p e \tag{3.17}
\end{equation*}
$$

since p is an isomorphism from E onto P and since $J J^{-1}$ is the identity on $K P$, by (3.12). Therefore $u=p e$ belongs to $P, s u=u$, and, by Theorem 2.3, we can write (3.17) in the form

$$
s J^{-1} K s u=s_{U}^{V}(P)^{\alpha^{\prime}} u ; \quad u \in P
$$

Corollary 3.1. Let u be an eigenvector of $(1-t) K^{-1} J(1-t)$, associated with $e_{U}^{V}(P)^{\alpha^{\prime}}$. Then u belongs also to $P \oplus$.

Indeed, if v belongs to P, we have

$$
\frac{\|u+v-t(u+v)\|_{V}^{\alpha}}{\|u+v\|_{U}^{\alpha}} \leqslant \frac{\|u\|_{V}^{\alpha}}{\|u\|_{U}^{\alpha}} \leqslant \frac{\|u+(v-t(u+v))\|_{V}^{\alpha}}{\|u\|_{U}^{\alpha}} .
$$

Therefore, $\|u\|_{\alpha}^{U} \leqslant\|u+v\|_{\alpha}^{U}$ for any v in U.

References

1. J. P. Aubin, Interpolation et approximation optimales et 'Spline functions," J. Math. Anal. Appl. 4 (1968), 1-24.
2. J. P. Aubin, "Approximation of Non-Homogeneous Neumann Problems. Regularity of the Convergence and Estimates of Error in Terms of n-Width," MRC Summary Technical Report \#924, University of Wisconsin, (1968).
3. A. Beurling and A. E. Livingston, A theorem on duality mappings in Banach spaces, Ark. Mat. 4 (1961), 405-411.
4. F. E. Browder, On a theorem of Beurling and Livingston, Canad. J. Math. 17 (1965), 367-372.
5. D. Cudia, The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284-310.
6. M. Golomb, "Lectures on theory of approximation." Argonne National Laboratory.
7. P. A. Raviart, Sur l'approximation de certaines équations d'évolution linéaires et non linéaires, J. Math. Pures Appl. 46 (1967), 11-107.
8. I. Singer, Charactérisation des éléments de meilleure approximation dans un espace de Banach quelquonque, Acta Sci. Math. (Szeged) 17 (1956), 181-189.

[^0]: * Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No. DA-31-124-ARO-D-462.
 + Present address: 121 Résidence des Eaux Vives, 91 Palaiseau, France.

